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Abstract. This analysis deals with the convective travelling wave instability appearing in a fluid medium at rest and 
contained between two horizontal rigid plates, subjected to the same sinusoidal temperature distribution, moving 
at a uniform speed and in the same direction. The temperature distribution is caused by travelling planar heat 
sources with a time harmonic output. A three-dimensional coordinate system is used and the small parameter ~ in 
this problem represents the ratio between the buoyancy and inertial forces. For a finite, yet small ¢, asymptotic 
expansions are assumed for the velocity, pressure, temperature and the Reynolds number. The mean motion 
generated by the Reynolds stresses is calculated separately. By keeping the Prandtl number fixed and by using long 
length and time scales, successive linearized perturbation equations are considered. Two successive amplitude 
equations are analyzed and their solution yields the mathematical form of these travelling waves, their group 
velocity and the elevation above the critical Reynolds number. 

1. Introduction 

Several papers have been written on the convective two-dimensional motion of a fluid due 
to a moving heat source near or at the boundary. Fultz et al. [1] and Stern [2] described 
experiments in which a flame is rotated around the outside bottom rim of a cylindrical vessel 
filled with water. They found that during the development of the motion from rest, the fluid 
acquired a net angular momentum in the sense opposite to the motion of the flame. Stern 
[2] examined a two-dimensional model to investigate whether a travelling heat source with a 
time harmonic output could indeed impart net momentum to the fluid contained between two 
horizontal plates. He assumed that each plate was subjected to the same sinusoidal temperature 
distribution, moving with a unifonn speed and in the same direction. He concentrated on the 
case when the depth of the fluid is small compared with the horizontal scale of the motion. 
Davey [3] performed some analytical calculations for the motion due to a moving source 
of heat, and his results for the mean flow generated by the Reynolds stresses lead to the 
conclusion that at all frequencies the net mean momentum is in the opposite direction to that 
of the thermal field. The motivation for these studies is connected with Halley's theory for 
the atmosphere's general circulation and for the wind angular momentum produced by the 
westward progressive heating of the earth by the sun. 

The mixed-convection problem of a weakly buoyant plume in the presence of an ambient 
current has been studied by Afzal [4] and Wesseling [5]. Afzal [4] considered a stationary 
two-dimensional line heat source placed in an on-coming vertical stream, while Wesseling 
[5] dealt with the buoyant plume induced by a point source in a free stream directed at an 
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Imposed sinusoidal temperature field 
0(+11/2, x+Ut, y) given by eq. (2.16). 
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Fig. I. Moving thermal forcing between two rigid walls. 

arbitrary angle with respect to the vertical. The last two mentioned papers deal with a heat 
source immersed in an infinite expanse of fluid, whereas the work of Miloh and Yahalom [6] 
considers the influence of both a rigid wall or a free-surface on the plume characteristics. 

The present work is connected with a three-dimensional extension of the analyses of Fultz 
[1 ], Stem [2] and Davey [3] for more realistic channel flows configurations. It deals with the 
very fundamental physical question whether a controlled heating of the boundaries of a 3-D 
domain bounding a quiescent flow can indeed generate a mean momentum flux produced by 
the Reynolds stresses in a prescribed direction. In addition, it presents some newly derived 
stability features of the induced convective flow, such as the travelling wave instability and 
the change in the critical Reynolds number. 

2. Basic analysis 

In this work we consider the uniform motion of a planar system of heat sources in between 
and parallel to two rigid plane boundaries in a medium which is otherwise at rest. The fluid is 
viscous and the flow is three-dimensional. The x and y axes are taken to be horizontal at the 
mid-depth of the fluid in a channel of depth h (see Figure 1) and the z- axis is taken as the 
upward normal to the plates. The mean motion, arising from non-linear interactions, is defined 
to be ~(z) and ~(z). No basic uniform motion is present and clearly the linearized solution does 
not render any motion. The mean pressure is/3(z), and u', v', w ', p~ and p~ denote the horizontal 
and vertical velocity fluctuations, the pressure and density fluctuations, respectively, which 
arise from the sinusoidal temperature perturbation applied on the boundaries, as explained 
in the sequel. The mean density of the fluid is Po, the kinematic viscosity is v and g is the 
downward vertical component of gravity. 

The main object of this paper is to determine whether an imposed time harmonic thermal 
field on the boundary can produce a horizontal mean motion of the fluid and, if this is the case, 
to find its average horizontal momentum. The Navier-Stokes and the continuity equations are 
written below as follows: 

Ou ~ ,. Ou' ,~ Ou' 0 
at + (~ + u )-3--;z + (~ + v }-~v + w ' ~ ( a  + u') 



1 Off .02~ 
Po O~ + v(-~z2 + v2u') 
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(2.1) 

o¢ u,)o,/ , / )o, /+w,o(o +v, ) 
ot + (c~ + oz  + (r' + ov 

_ 1 Off .02f) 
po o~ + "( ~ + v%') (2.2) 

Ow~ Ow~ l, Ow~ w ~ Ow~ + (~ + ~')--~-~ + (~ + ~ )--~-~.~ + or Oz 

l (ap' ) 
= -p--o \-~z + p'g + ~'v2w' (2.3) 

Off Off Ow' 
Ox + -fifty + 0--)-- = 0. (2.4) 

The pressure term p~ can be eliminated by differentiating the linearized forms of (2.1) and (2.3) 
with respect to z and x, respectively, and subtracting the two. Differentiating the resulting 
equation with respect to x, yields: 

o(o 
k, OZ OX ] flo OX2" (2.5) 

Similarly, by eliminating ff between the linearized forms of (2.1) and (2.2) we have: 

Oy \ '~z  Oy ] Po OY 2" (2.6) 

where the boundary conditions for these equations are u' = v' = w' = 0 at z = -4-h/2. 
Use of the continuity equation (2.4) leads to a linearized perturbation equation in w' and 

/91: 

( o )  ( ) ~ - / j V  2 V2w' = - 9.~- 02 02 p,. 
Po ~ + ~y2 (2.7) 

The energy equation is usually given in the following form: 

[o0 ] 
pep ~ -~- ('U. V)O _..i kV20 (2.8) 

where O(x, y, z) = O(z) + if(jr, y, z) represents the temperature. The mean and perturbation 
temperatures are denoted by 0 and 0 ~, respectively. 

If we consider the linearized version of (2.8) and use dimensionless quantities by the 
same symbols as the corresponding dimensional ones, we get a system of linear differential 
equations for the perturbed variables, as follows: 

(o 12) ~ V  V2w ' = e O' ~x2 + ~y2 (2.9) 



504 M. Weinstein and T. Miloh 

( out __ 020' 
iaz ( 0 1A V2) k Oz iOlxWt) -~--£-~X 2 (2.10) 

icty ~ 2AV 2 -- iaywt \ OZ = --e 0y 2 (2.11) 

(o 1 ) 
Ot 2Aa V 2 0 t  = 0 (2.12) 

where proper account has been taken of the proportionality of p' and O' as indicated by 
the equation of state. Furthermore, A = Uh/2v denotes the Reynolds number, h represents 
the distance between the two rigid walls and is used here as the length scale, U is the 
velocity scale, h/U is the time scale, k is the thermal conductivity,/3 is the thermal expansion 
coefficient, # is the dynamic viscosity, cp is the specific heat for constant pressure coefficient, 

is some reference temperature, a = #%/k  is the Prandtl number and e = ~ghO/U 2, 
which is a measure of the ratio between buoyancy and inertial forces, is considered a small 
parameter in the following analysis. This parameter may also be expressed as e = /3/}/Fr, 
where Fr = U2/9 h is the Froude number. Finally, ax and ay are the corresponding wave 
numbers in the following Fourier expansions: 

u' = e ia= (x+ut)+iav YUl (g) + e-ia" (x+Ut)-ia~ YU~ (Z) (2.13) 

v' = eia=(z+Ut)+iaYYvl (z) -4-e-ia*(z+Yt)-ia~Yv~(z) (2.14) 

tO'= eia~(z+Ut)+iaYYwl (Z) + e-ia~(x+Ut)-ia~Yw~ (z) (2.15) 

and a = (a  2 + a~) 1/2 is the wave number of the disturbance. In addition it is assumed that: 

o(x, v, z) = + O'(x, v, z) 
= O(Z) + eia~(x+Ut)+iauYOl(z) + e-ia~(x+Ut)-iauYO~(z) ( 2 . 1 6 )  

where 0 is the mean temperature with respect to x and y. This condition for 0' is imposed in 
order to have a realistic planar temperature distribution at the boundary. The temperature field 
is assumed to move with a constant velocity in the x-direction. The longitudinal wave number 
is az  and the transverse one is ay. Letting ay = 0 renders a two-dimensional problem similar 
to the one formulated by Stem and Davey [3]. Imposing boundary conditions on the side walls 
will imply integer values for a v in terms of the channel width. In this problem the values 
of t~ at the upper and lower boundaries are assumed (as in Davey and Stem) to be identical 
constants. Let us choose the origin of a Cartesian coordinate system half way between the two 
rigid plates, such that O(Th/2) = 0 = const. 

Substitution of (2.13)-(2.16) in the system of equations (2.9)-(2.12) yields a system of 
differential equations for ul, vl, Wl and Ol, as follows (D = d ) ;  

2 -- 2iazUA)wl 2Aea201 (2.17) (D z - otZ)(D z - a z = 

(D 2 - -  a 2 - -  2ictxUA)(Dul - iaxwl) -- 2iAazeOl (2.18) 

(D 2 - a 2 - 2iaxUA)(Dvl - iaywl) = 2iAaueOl (2.19) 



(D 2 - a 2 - 2ia~U)~a)Ol = O. 
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(2.20) 

Following Stem [2] attention is confined here to cases where the depth of the fluid is small 
compared with the wavelength of the thermal field in both x and y directions, i.e., (a2h 2 < <  
47r2). This is done only to ease the algebra involved but does not affect qualitatively the 
outcome. In this way, and using the shallow layer approximation, we obtain: 

D2(D 2 -- 2i~xU)~)wi = 2~ca201 (2.21) 

D ( D  2 - 2ic~zUA)u| = 2i)~aze01 (2.22) 

D ( D  2 - 2 i a z U A ) v l  = 2i)~ayeOl (2.23) 

(D 2 - 2iazU)~a)Ol = 0 (2.24) 

where the variable wl has first been eliminated from (2.18) and (2.19) and then the system 
was subject to Stem's approximation. 

Before continuing to the next stage the definitions will be completed with 

f~ = 2 a z U A a ,  (~2 = --,i~ 8 2 = if~ (2.25) 
cr 

The quantity ~2 measures the ratio of the time scale for heat to diffuse through a distance h, to 
the time scale imposed by the moving thermal field and thus can be regarded as a frequency 
parameter. 

In this three-dimensional problem, like the two-dimensional version considered by Stem in 
the past, we assume that the fluid layer is vertically bounded by two rigid horizontal plates. 

From (2.24) and (2.25) the solution for 01 with the boundary conditions 01 = 0 at z = + 1/2 
is given by: 

01(Z ) coshsz 
= ~ (2 .26)  

t~ cosh~ 

By combining the equation of state with (2.26), (2.21) and (2.25), it may be written as: 

F TM _ t~-2[?  I I  - ( ~ - 2 s 2 C ° s h s z  
coshS/2 (2.27) 

where F(z) has been defined by the expression: 

2UZA a F ( z )  (2.28) 

and the dashes denote differentiation with respect to z. The boundary conditions u' = v ~ = 
w' = 0 at the walls are translated to: 

F = F ' = 0  at z = + l / 2  

The solution of (2.27) and (2.29) is given analytically by: 

( a - 1 ) F =  stanhS/2 [1 cosh&z] [1 coshsz] 
& tanha/2 ~ J  - coshS/2 J " 

(2.29) 

(2.30) 
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The value o f F  for a = 1 can be found from (2.30) by using l'H6pital's role. 

1 ( cosht~z~ ( & ) ticoshSz 
l imFa~l = ~ 1 cosha/2j 1 + ~  +2cosh'V2 

( 1 tanh~/2) kZ tanh ~ z -  ~ (2.31) 

The mean motion is evaluated by extracting the mean part of (2.1) and (2.2) over one wave- 
length. The mean motion generated by the Reynolds stress, expressed in non-dimensional 
form, satisfies (see Hinze [7]) a pair of two differential equations: 

d2-~ ~z ~ z  2 = 2A (u-~w ~) (2.32) 

d29 d 
dz ~ -- 2A~zz(V'W') (2.33) 

According to the last two equations and (2.28): 

ul vl - l e o  , 
= = 2.;-OrA  F (z ) .  (2.34) 

Integrating by parts to remove the double integral and since F(z) is an even function, we 
determine the average mean velocities ~ and ~ of the fluid: 

a-~ = a--u = 2A ~otxU-2o ' ]  Im zF_g"dz (2.35) 

where it should be noted that the average mean velocities are of the order of the square in the 
fluctuations velocity, and where a second overbar denotes a mean value with respect to z. Im 
denotes the imaginary part and fi' is the complex conjugate of F. For large and small values 
of A and a some asymptotic values are found, as follows: 

[ 1-332+aV2+103+a'/2+3 ] 
v/2-~(al/2 + 1)(a + 1) + O(f~ - l )  (l) large) (2.36) 

~ = 2 ( 1 + a )  ( e0 ) 
c~x -- au 12!33A azU2a [[2s + O(~7)] (f~ small) (2.37) 

corresponding to each case of f~ large and f~ small. By taking au = 0, it is possible to retrieve 
Davey's [3] results in non-dimensional form. 

3. Modulation analysis 

In the governing equations (2.5)-(2.6) we take an expansion in powers of e for 01, Wl and the 
Reynolds number A, as follows: 

01 = 010 --1- ~0|1 + ~2012 -]-- . . .  

'U31 .-~ eZOll + E2W12 --~ ~:3Z/113 --{- . - .  (3.1) 
A = A o + e A l + e 2 A 2 + - " .  



By now introducing the long X,  Y and time r scales, 

z = ~ - I x ,  y = e-lY, t = e - I t  

we define 

010 = B ( X ,  Y~ 7")910 , Wll = B(X,  Y, 7")fll 
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(3.2) 

(3.3) 

where B(X ,  Y, ~-) is an amplitude function of the long space and time variables to be deter- 
mined from the perturbation equations. If fiR, fll and g0R, g0I are the real and imaginary parts 
of fll and glo, respectively, then the O(e) system is as follows: 

M2 f ln  + 2axUAoM f l l  - 2Aoa29on = 0 (3.4) 

MZ f li - 2oLzUAoM f l R - 2AoaZ9oi = 0 (3.5) 

M9OR + 2axUAoa9Ol = 0 (3.6) 

M 9oI - 2c~xU AotY9OR = 0 (3.7) 

where M is a differential operator defined by M = D 2 - a 2. 

3.1.  ADJOINT SYSTEM 

In order to find a solution for the subsequent systems of differential equations, there is need 
to define the adjoint of the system (3.4)-(3.7), i.e., 

2 + -- 2c~xUAomf+ = 0 M f lR (3.8) 

M2I  + + 2axUAoMI+R = 0 (3.9) 

M g + R -  2azUAcr9 + - 2AoC~2 f+R = 0 (3.10) 

M9 + + 2ctzUAcr9+ R - 2Aoa2f + = 0 (3.11) 

with the boundary conditions flz = 910 = 0 at z = 4-1/2. 

3.2. O(e 2) SYSTEM 

By separating ~012 and 01 i in real and imaginary parts 

011 = OIR -t- i011, W12 = ~/32R n t- iW2I (3.12) 

it yields a system of four inhomogeneous partial differential equations 

ME'tOER + 2Aoot~UMw2l -- 2,~0a201R = 

= 2 A o ~ M f l R  - 2axUAiBMf lx  

4" OB OB +2~Ia2goRB + (o~x-~ + o~y-~). 

• [-,Xo(g0t + axUflR)  + M fit] 

(3.13) 
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M2w2I - 2AoazUMw2R - 2Aoa201i = 
OB 

= 2Ao-~TMfli  - 2azUAl B M f l R  

OB OB 
+ 2Ala2901B + 4 ( a z - ~  + a y - ~ ) .  

• [Ao(90g -- azV f l I )  + M fiR] 

(3.14) 

MOIR -- 2axUaAoOl! = -2otzUAlaBg0s 

2"(az-d- ~OB Oy 2AOa~_~T gOR + + ay-~- . )9oi  + 

(3.15) 

MOll - 2a:rUaAoOiR = 2azUAtaBgoR 

2' tax ~'~- OB OY" OB + 2)~oa~9o I - + ~v--~--)goR 

(3.16) 

t h e  boundary conditions being 011 = WI2 = 0 a t  2: = 4-1/2. 
It can be seen that the left hand side has the same form as the O(e) equations• A certain 

validity condition involving the adjoint has to be satisfied. By multiplying the inhomogeneous 
differential system with the adjointfl-iR,3?t, g+R and g+, respectively, adding and integrating 
over the domain of variance of z, it leads to a differential equation for the amplitude function 
B(X,Y,T) .  

a u OB 10B UTAI B OB + + = 
OX az OY e Or 71 

(3.17) 

where, 

ri/2 
71 = 2 J_ l l2{2[M f~l - Ao(VOS + a z U  f l R ) ] f  + -- (3.18) 

- - 2 [ M I I R -  Ao(9on- axUIlI)]I  + + (9oi9+R + 9oRg+)}dz 

[112 [f+RMfIR + f+MFls + O'(#oR,qO+R + 9019+)] dz 72 = 2a_i/2 (3.19) 

[1/2 [f+ M flR - f+RM f ,  l + ~(90R9+Ol - 9019+R)] dz 7 = 2j_l /2 (3.20) 

and e = 71 az/TZAo is the group velocity determined with the aid of adjoint functions. 
The solution of (3.17) can be described in the following manner: 

B(X ,  Y, r) = exp(UfAlre. /Tt)~(X/2 + o~zY/2av - ?.r) (3.21) 

where ~ ( X / 2  + axY/2ot u - e.r) is a unit 27r periodic function and defined as follows. 

~ ( x / 2  + axY/2a~,  - c¢)  = a0 + 

-'I-Y]~7= 1 [ajcos j (X/2  + azY/2c~ v - & ) +  

+bj sin j ( X / 2  + axY/2a  v - cY]. 

(3.21a) 
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A neutral solution, which is neither growing nor decaying in time or space, is obtained by 
seeking a solution which is periodic in r, which implies ,~1 = 0. 

Without loss of generality we may restrict ourselves to a simpler form, as indicated below 

O(X/2  + azY/2ay  - cf  ) = 

ao + am costa(X~2 + axY/2ay - c¢) + (3.21b) 

+bin sin m ( X / 2  + azY/2ay  - cy) 

where m has an integer value. 
Next, the functions 011 and wl2 can be expressed as: 

011 = gll ( z ) } (X ,  Y, r) + BI (X, Y, r)glo(z ) (3.22) 

"//)12 = f l2(Z)~(X, Y, r) + Bl (X, Y, r) f ll (z) (3.23) 

where ~ is the known function OB/OX and the functions gll(Z) and flz(z) are governed by 
ordinary differential equations, as follows: 

MZf2R + 2otxUAoM f2I - 2AootZglR = 

2M(8az f l l  - A o c f l R )  - -  16otzAo(axU f lR - 9oi) (3.24) 

M2 f2I - 2azUAoM f2R - 2Aoa291I = 

- 2M(8az f lR  + )~oC. f l i )  - 16azAo(9on + azUf l t )  

M91n + 2axUaXo9u = 2(2az9Ol + Aoaa9on) 

(3.25) 

(3.26) 

Mgll  - 2otxUaAoglR = 2(--2azgOR + Aoa690i) (3.27) 

where (fzn, f2I) and (gin, 91t) are the real and imaginary part offl2(Z) and gll(Z), respec- 
tively. 

The solution is determined up to an additive multiple of the corresponding homogeneous 
system and this is illustrated by the inclusion of terms containing B1 (X, Y, T). 

3.3. O(e 3) SYSTEM 

In order to obtain the change in the critical Reynolds number there is need to extend the 
formulation to a higher O(e 3) system. A system of four inhomogeneous differential equations 
is obtained for the real and imaginary parts of w13 and 012, with the left hand side being 
identical to that of the O(e) and O(e 2) systems. The right hand side is more complicated and is 
a function of the O(e 2) correction A2 instead of AI appearing in the system (3.13)-(3.16). This 
system will have a solution provided the known orthogonality condition involving the adjoint 
will be satisfied. It leads to an inhomogeneous differential equation for the second amplitude 
Bl (X, Y, r) (see Appendix), as follows: 

OB1 ay OB1 10B! - - +  ~ + - ~  = l iB + 12 (3.28) 
OX az OY a Or 

with 

II = L ( u " ) ' ) k 2  - m 2 '72) (3.29) 
71 a:~ 
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and 

12 = m 2 73 ao (3.30) 
t2x')'l 

and where m has been defined beforehand. The parameters 71 and 7 are given by (3.18) and 
(3.20), respectively, and 73 is defined in the Appendix. 

The complete solution is given below as: 

x _ + 
B1 (X, II, r) = ?.r{ll [ao + am cos m ( ~  + 

2ay 
x__ 

a~__~Y _ at)] +/2} + (3.31) +bin sinm( 2 + 
2au 

+ C B ( X ,  Y, r) 

where C is an arbitrary constant connected with the solution of the homogeneous problem. 
If we seek a neutrally stable solution in time and space we must choose ll --- 12 = 0 which 
finally leads to ao = 0 and 

A 2 = m  2 ")'3 azU7 (3.32) 

where A2 represents the elevation above the critical Reynolds number due to the travelling 
waves effect. 

4. Discussion 

For low frequencies (i.e. f~ < <  1) there is an indication that the average mean velocity ~ is 
again positive and proportional to U. The open problem when the fluid is bounded from above 
by a free-surface will probably show similarity for high frequencies but some differences 
for low ones. Here a situation of resonance can be encountered when the surface waves 
continuously absorb energy from the flow, leading to an increase in the amplitude up to the 
stage of a breakdown. For the open problem, a separate analysis would be needed. 

In a similar way to the idealized two-dimensional problem, it has been found that in the 
present three-dimensional configuration a net mean momentum is present, giving the indication 
that the velocity fluctuations transfer momentum which is balanced by the stresses caused by 
the mean velocity field. For large values of the frequency the mean flow is proportional to 
U -4 in agreement with Davey's [3] calculations. It may be aligned along an arbitrary direction 
by imposing a transverse variation. The longitudinal component of the mean momentum flux 
was found to be in the opposite direction to the travelling thermal field, at least under the 
conditions that the frequency parameter is sufficiently high. It can be noted that the stability 
analysis is not restricted only to the case when the depth of the fluid is small in comparison 
with the wavelength of the thermal field (a2h 2 < <  47r2). 

The Froude number based on the upstream velocity and on the submergence depth, is 
relatively small over most of the parameter range, while the Reynolds number based on the 
same parameters, ranges from A = 1 for U = O(lO-3m/s) to A = 106 for finite values of U 
and h. 

It is found that for the linearized stability theory the critical Reynolds number shows an 
O(e 2) correction due to the travelling waves effect. Stability studies for the wavy instability 
appearing in the Taylor problem show the same type of O(e 2) correlation for the linearized 
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analysis, but the nonlinear analysis leads to an O(1) correction in the critical Taylor number 
[8]. The elevation above the critical Reynolds number is generally positive and depends on 
the mode number. It is inversely proportional to the velocity and longitudinal wavelength. It 
would be quite essential to continue with a nonlinear study of the travelling wave instability 
caused by the same moving thermal forcing and the expectation is that it will show a likewise 
O(1) correction in the Reynolds number. 

5. Appendix 

5.1. O(e 3) CALCULATIONS 

The O(e 3) system of differential equations, in complex form, can be written as follows: 

M ( M - 2iAoaxU)wl3 - 2)~oa2012 

= -2A2a201o + 2,~o ~ - 7  + ~ - 7  01o + 

( 0 0) 
+ 4iA a z - ~  + a y - ~  Oil + 2iazUA2Mwll + 

o 
+ 2 ) ~ o M ~  2 4(az -~+au~- - -~ ) ( iM+)~oa~cU)wl2 -  

- 2 ~ + -g~ ( M -  i~o~U)wl, (A.1) 

(M - 2iotxUa)~o)Ol2 = 2iaxUo)~201o 

Separating the functions wl3 and 012 into their real and imaginary parts yields: 

M2w3n + 2AoaxU Mw3t - 2AoOL202R = Fl ( X,  Y, r, A2, B) (A.3) 

M 2 w 3 I  - 2 , ~ o o t x U M w 3 R  - 2/~o0t202I = F2(X, Y, 7-, •2, B) (A.4) 

MO2R + 2ctzUtr)~oO2I = F3(X, Y, 7-, ~2, B) (A.5) 

M 0 2 I  - 2oLUztT.,~oO2R = F4(X , Y, T, "~2, B) (A.6) 

where 

FI OBi 
2,~om f ln  " ~ + 4[m f l i  + Ao(goI - axU fiR)] 

0 
• (a:r 0---7 ~- + otu~--~)Bl - 2 [ a x U ~ z M f l l  - ,~2ot2goR]B + 

a: city 

+2M(AoO, h R  -- 2 a j z t )  + 4OtAo(--91l + otzU f2R) } 
• 4), (X, Y, r, m) (A.7) 
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0t31 
4[M fiR + )%(gOR + o~zU flI)](o~z-ff--~X + 2)toM f il " o. r 

0 B 2 or2. 1 1 
+,~-8-f ) ~ + + 2 ~ , ~ [ U M k R  + ,~Oo~]B + m {y¢~+~). 
• [MflI  - Ao(axUflR -- gOl)] + 4o~zAo(otxUf2I + glR) + 
+2M()%6f2, - 2olxf2R)}¢l (X, Y, T, m) (A.8) 

& 0 OB1 
= -2azUcrAagolB + 2g0l(ax~X + a y - ~ ) B 1  + 2aAogoR-~T + 

Ot 2 . I 4 )gOR +2m2[-~o~ + y ( ~  + + o'~.~o91R] O~y 

¢ l ( X , Y , T , m )  (A.9) 

F4 

where 

2 0 0 OB1 
= 2azUaAEgORB - goR(O~x-~ + oLy--~)Bl + 2aAo9O1-~-" + 

"~ ( ± -~ )go, + o~og,,]¢, (x, y, ~, ~) +2m2[°~zglR + 8 o~ 2 + O~y (A.IO) 

¢ I ( X , Y , T , m )  = B ( X , Y , T , m )  - ao. (A.11) 

Since we wish to have consistency in our calculations as far as the systems (3.4)-(3.7) and 
(A.3)-(A.6) are concerned, an orthogonality condition involving the adjoint has to be fulfilled, 
namely: 

f l / 2  (Flf+R + F2f + + F39+R + F49+) dz = 0. (A.12) 
t/2 

After some algebraic manipulations it leads to a first-order partial differential equation for B1 
in the variables X, Y and the time r, as follows: 

O B l a y O B i l O B ,  1 ( m2 73 ) m2ao73 
- - ~  "4---Olx " -~  "4- ~ ~ --~ 71-- U f ) t 2 -  alphaz B +  ~,~lO~x (A.13) 

3' and 3'1 are already defined and 73 appearing in the latest O(e 3) calculations is defined by 
the algebraic expression: 

1 
U 3  = ~x(g,,9o +. - g , R : )  - ~oOe(g,,go +, + g , , : )  + 

+ 2otxXo[91Rf + -- goRf?R -- °tzU (f21f + - f2RI?R)] -4- 
+M[2az(f21f+R- f2Rf +) - ~oe(f2Rfl+R + f2ifl+i)] (A.14) 

a2( 1 1 ) [ M ( f m f +  R + f l l f  +) + ,~of+R(azUf,,--gon) 
4 oLzz + Oty 

1 + 
)%f+ (oez U f l R + gOl ) + ~ (goRgoR + goIg +)]" (A. 15) 
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The method of  solution of  the differential equation (A.13) is based on the method of  char- 

acteristics and stability consideration enables to calculate the change in the critical Reynolds 
number, shown already by (3.32). 
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